
02.16.0602.16.06

Introduction 02.16.06

Introduction
Arcane-FX (AFX) is an advanced special effects system for the Torque
Game Engine (TGE). AFX specializes in spellcasting effects, and with it you
can create rich and dramatic magic effects as seen in World of Warcraft,
EverQuest II, and other commercial role-playing games.

The AFX package consists of two main parts: the AFX Effects Engine and the
Spellcasting Starter Kit. The Effects Engine is a programmable framework for
choreographing high level thematic effects using existing TGE effects as well
as custom AFX effects. The Spellcasting Starter Kit features a collection of
example magic spells along with a demo game to showcase the spells in
action. The AFX Effects Engine is described in this document, while details
about the Spellcasting Starter Kit can be found in a separate document.

Effects Engine
The AFX Effects Engine is the brains of Arcane-FX. As a generalized effects
system, it allows many different types of special effects to be controlled using
the same method. Explosions, particle emitters, sound effects, animated
models, character animations, lights, script events, terrain decals, and more,
are all timed and positioned using a common mechanism.

Specifically, the Effects Engine includes a flexible spell system, capable of
representing a large and varied assortment of magic spells: quick instant spells,
elaborate conjuring spells, long-lasting buff and de-buff spells, damage over
time spells, area effect spells, guided projectile spells, creature summoning
spells, resurrection spells, teleportation spells, and more.

Component Effects
Component effects are the building blocks of the Effects Engine and are a
good place to start learning about AFX. Many of them are effects that you are
probably already familiar with. The standard TGE Explosion is one example of
a component effect. The AFX custom Zodiac effect is another.

An important consideration of component effects is that they are conceptually
separate from the Effects Engine. This is what allows AFX to support pre-

Effects Engine 1

Component Effects 02.16.06

existing TGE effects like Explosion, ParticleEmitter, and
AudioProfile. It also means that AFX is easily extended to support custom
user effects by implementing a relatively simple adapter class.

Component effects are not limited to visual effects, and include sound effects
and script events. Actually, just about anything you want to happen at a
specific time and place, can become a component effect under AFX control.

Passive and Influence Effects
Most special effects are passive in that they are primarily decorative in nature.
Other objects don’t collide with them and they don’t manipulate or change
other simulation objects. Passive effects can usually run exclusively on the
clients, effectively invisible to the server. Take particle emitters as an example.
You may have identical emitters running on different clients, but it’s usually
not important that each particle they generate matches between them.

There is another category of effect called an influence effect. These effects do
something to other simulation objects and therefore usually have to execute on
the server, or both the server and clients. Examples of influence effects include
afxCameraShake and afxAnimClip. afxCameraShake causes the
camera or other objects to move around, while afxAnimClip selects
animation sequences in Player objects.

Effect Wrappers
Effect Wrappers are what make it possible for the Effects Engine to make use
of special effects outside of the system. An important assumption made in the
Effects Engine is that it does not need to know much about specific component
effects in order to combine them into high level thematic effects. To the
engine, most effects are just black boxes that need to be told when and where
to do whatever it is that they do.

As the name implies, Effect Wrappers wrap around or enclose existing effects
and make them all look the same to the rest of the engine. In object oriented
programming terms, they provides sort of an after-the-fact polymorphism
between effect types.

For each component effect used in an AFX effect, a corresponding effect
wrapper is created using an afxEffectWrapperData datablock.

Effects Engine 2

Component Effects 02.16.06

afxEffectWrapperData knows about a large number of different
component effects and it can be extended to recognize additional component
effects with the addition of a small amount of customized code.

TGE Component Effects
Following is a summary of standard TGE effects currently recognized by the
AFX Effects Engine. Except where noted, these effects are unmodified from
their form in TGE. In all cases, they should be compatible with any pre-
existing datablocks you may already have defined for these effect types.

AudioProfile – passive effect
AFX supports audio effects using standard TGE AudioProfile datablocks
which in turn utilize AudioDescription datablocks. Audio effects are
created from AudioProfiles using alxPlay() and managed internally.
AFX dynamically controls an audio effect’s location and when it shuts off
possibly with a fade out. Both looping and one-shot sound effects are
supported.

CameraShake – influence effect
AFX utilizes the standard TGE CameraShake class to implement a camera
shake effect. CameraShake is not normally specified with a datablock, so
this is done using afxCameraShakeData datablocks. The TGE
CameraFXManager is not used. Instead, the CameraShake class is
managed by the Effects Engine. In spite of its name, this effect is not limited to
shaking the camera. The target of its effect is determined by the AFX
constraint system.

Debris – passive effect
The Debris effect is a standard TGE effect which can also be used as an
AFX component effect. AFX uses DebrisData datablocks along with the
Debris class to create client-only debris. AFX controls when and where
Debris is used including its initial direction vector, but once the debris is
triggered it must resolve on its own. Once started, AFX won’t interrupt the
debris early or dynamically change anything about it.

Effects Engine 3

Component Effects 02.16.06

Explosion – passive effect
The Explosion effect is a standard TGE effect which can also be used as an
AFX component effect. AFX uses ExplosionData datablocks along with
the Explosion class to create client-only explosions. AFX controls when
and where an explosion occurs, but once the explosion is triggered it must
resolve on its own. Once started, AFX won’t interrupt the explosion early or
dynamically change anything about it.

ParticleEmitter – passive effect
The ParticleEmitter is a standard TGE effect which can also be used as
an AFX component effect. AFX uses ParticleEmitterData datablocks
along with the ParticleEmitter class to create client-only particle
emitters. AFX dynamically controls a particle emitter’s location, orientation,
and when it is actively emitting particles. AFX actually uses an enhanced
ParticleEmitter for some spells in the Spellcasting Starter Kit, but the
standard ParticleEmitter can be used if the enhancements are not
needed.

AFX Custom Component Effects

afxAnimClip – influence effect
An afxAnimClip forces a target Player or aiPlayer object to play a
particular animation sequence. The afxAnimClip does not supply any
animation data, it merely selects, by name, a sequence that is already defined
in the target. Normally when an afxAnimClip is applied to a user-controlled
Player object, any interactive user actions will override the animation
selected by the afxAnimClip, but AfxAnimClips can be configured to
temporarily block out user actions.

afxAnimLock – influence effect
Although afxAnimClips can be configured to block out user actions,
sometimes it’s only appropriate for the user to be blocked out for a short
section of a longer playing afxAnimClip animation. afxAnimLock can be
used to set a specific timespan when user actions are blocked, independent of
afxAnimClip timing.

Effects Engine 4

Component Effects 02.16.06

afxLight – passive effect
Dynamic lighting in TGE is supported at a low level, generally allowing any
subclass of SimObject to act as a light using the registerLights()
method. AFX adds the simple afxLightData and afxLight classes for
implementing client-only dynamic light effects. afxLight supports all of the
TGE lighting types: Point, Spot, Vector, and Ambient, but in practice,
Point is the most useful because the other types have no effect on terrain and
interiors.

afxModel – passive effect
TGE has a number of model classes, but lacks an effective client-only model
effect. AFX fills this gap with the lightweight afxModelData and
afxModel classes. afxModel loads a single dts format model and can play
one animation sequence stored in the model. It also has settings for
transparency and can override some material settings.

afxScriptEvent – script effect
Arbitrary script functions can be called as an AFX effect using
afxScriptEvent. It is neither a passive or influence effect in that it
depends what the script does. Only server afxScriptEvents are
supported.

afxZodiac – passive effect
AFX includes a very useful decal-like effect called an afxZodiac.
afxZodiacs are decal textures that are always projected vertically onto the
ground and are often circular. Parameters control dynamic rotation, and scale
as well as texture, color, and blending style. afxZodiacs are very effective
as rune lighting rings that rotate below a magic user while casting a spell. They
are also useful for explosion shockwaves and scorched earth decals.
afxZodiacs work on both terrain and interiors.

Effect Choreographers
In AFX, high level special effects are created and coordinated using Effect
Choreographers. At this time, the only implemented Effect Choreographer is

Effects Engine 5

Effect Choreographers 02.16.06

the Magic Spell Choreographer, but a number of different choreographers are
planned.

Magic Spell Choreographer
The afxMagicSpell choreographer is for creating spellcasting effects and
it was the first choreographer implemented in AFX. afxMagicSpell
manages the concept of a magic spell from the time spellcasting begins until
the spell finally dissipates.

Spell Structure
Since magic spells are a fantasy construct and there are no real world examples
to study, the nature of a spell’s behavior is open to interpretation.
afxMagicSpell attempts to reproduce the magic behavior found in many
computer role-playing games.

Specifically, an afxMagicSpell has up to 5 distinct phases: Casting,
Launch, Delivery, Impact, and Linger. Casting, Delivery, and Linger often
cover a span of time, while Launch and Impact are always a specific moment
in time. An afxMagicSpell passes through each of these phases in order,
but often one or more of the Casting, Delivery, and Linger phases are reduced
to a zero duration and effectively ignored.

Casting -- The Casting phase is a warmup period in which the spellcaster
prepares to cast a spell. Typically, this is treated as a time period where the
spellcasting can be interrupted by damage to the spellcaster, or if the
spellcaster moves. The length of casting time is an important element for game
balancing, as it influences the vulnerability of the spellcaster and affects how
often the spell can be repeated. Some spells, often called instants, have a zero
duration casting time and proceed immediately to the Launch event.

Launch -- The Launch is the specific moment when the spellcasting is
completed, and the spell now exists independently of the spellcaster. This is
usually the time when the spellcaster pays the mana cost of casting the spell.

Delivery -- Delivery phase is an open-ended period of time where the spell
moves from the spellcaster to the location of a target. Often Delivery is
determined by a projectile that moves through space and may or may not hit its
intended target.

Effects Engine 6

Effect Choreographers 02.16.06

Impact -- Impact is a specific moment when the spell reaches a target or
possible when the delivery phase exceeds a time limit.

Linger -- The Linger phase is a period of time where the spell continues to
affect a target.

Spell Effects
Spell effects are organized around the five phases: Casting, Launch, Delivery,
Impact, and Lingering. For each phase, there is an independent list of effects
connected to it. Each phase establishes a localized time span or instant off of
which the timing of its effects are based. For example, take an effect that is
configured to start at a time of 1 second and last for 2 seconds. If that effect is
attached to the Casting phase, it will start 1 second after the Casting phase
starts and last for 2 seconds. While effects cannot start before the start of the
phase they are attached, they can last beyond the end of the phase and overlap
effects in the next phase.

Constraint System
When designing special effects, one of the best sources for animation is other
animated objects. The AFX constraint system allows you to directly “borrow”
the animation of other objects and use it to place your effects. Each effect
wrapper specifies three separate constraints. A position constraint which
specifies a 3D location, an orientation constraint that specifies an orientation
or bearing, and an aim constraint, which is another positional constraint,
usually used to point the effect towards. (Several other constraints are
currently being considered: an influence target for indicating what object an
influence effect should act on, a condition constraint indicating an object that
can be tested for conditional effect execution, and a timing constraint that
would contain timing information.)

Constraint Objects
The constraint system supports several different types of constraint object,
point constraints, object constraints, and shape constraint. A point constraint is
a point is space. Spell effects that are active after the spell's missile impacts a
target, can be constrained to the impact position, which is a point constraint.
An object constraint allows constraining to the origin of a scene object. Effects
can be constrained to a spell's missile projectile which is an object constraint.

Effects Engine 7

Constraint System 02.16.06

A shape constraint allows constraining to the origin of a shape or to one of the
shape's hierarchical nodes. The spellcaster character is a shape constraint and
effects can be constrained the the spellcaster's origin, or to one of its nodes
such as a hand or a foot.

Constraint History
A powerful feature of the constraint system is constraint history. Constraint
objects can be configured to record a short history of past positions and/or
orientations. Both the length of history recorded and the sampling rate can be
configured. Effects constrained to a constraint with history can refer to old
values of the constraint within the recorded range.

Constraint history is useful for creating effects that follow behind another
object. Constraint history is used in the Spellcaster Starter Kit spell called
Insectoplasm, where model segments line up behind an erratically moving
missile to form a giant centipede-like monster.

Transform Modifiers
While the AFX constraint system is very powerful, all you can really do with it
by itself is hang your effects onto your characters and objects like ornaments
on a Christmas tree. Usually, you want something a bit more dynamic than
that, and in AFX you get more by using transform modifiers. A transform
modifier is a code module that changes an effect’s current location, orientation,
and/or aim location. One transform modifier might move an effect’s position
by a simple offset. Then another might rotate the effect about an arbitrary axis.
Yet another, adjusts the effect's position vertically to a fixed height above the
ground. By arranging transform modifiers into a sequence of operations, you
can achieve a large variety of procedural animation behaviors.

Transform modifiers are used in effect wrappers and are arranged as a
sequential list of modifiers. Each modifier picks up where the last modifier left
off and further modifies an effect’s location, orientation, and/or aim location.
For example, use a small LocalOffset followed by a Spin and your effect will
spin on its own axis a short distance from its constraint position. Reverse the
order, placing the Spin first, followed by the LocalOffset, and your effect will
orbit its constraint position.

Effects Engine 8

Transform Modifiers 02.16.06

afxXM_WorldOffset
A 3D offset is simply added to the effect’s current location.

afxXM_LocalOffset
A 3D offset is reoriented using the effect’s current orientation and then added
to the effect’s current location.

afxXM_Spin
The effect’s current orientation is modified to rotate around a specified axis, at
a specified rate and starting angle.

afxXM_GroundConform
The effect’s current height, (the Z component of its position), is adjusted to a
specified height above the terrain or interior below it.

afxXM_Aim
The effect’s current orientation is adjusted to face its positive Y axis toward
the effect’s aim constraint.

afxXM_PathConform
The effect’s current position is adjusted to conform to a specified path. It’s
orientation may also be adjusted to orient to the path.

afxXM_Freeze
An effect’s position, orientation, and/or aim constraint is sampled exactly
once, and then repeated from then on, regardless of changes in the constraints.

Effects Engine 9

	Introduction
	Effects Engine
	Component Effects
	Effect Choreographers
	Constraint System
	Transform Modifiers

